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A dynamical system driven by controls and uncontrollable noise is considered in a game-theoretic setting [1--8]. The problem of 
feedback control in which the performance index is a positional functional of the motion of the system [8-11] is investigated. 
On the assumption that the structure of the functional satisfies reasonably general conditions, a procedure is proposed for 
computing the value of the: corresponding differential game. Irrespective of the number of dimensions in the initial problem, as 
dictated by the structure ot'the performance index, the proposed procedure reduces to the problem of the successive construction 
of the upper convex hulls of certain auxiliary functions in domains whose dimension does not exceed that of the phase vector of 
the system. © 1998 Elsevier Science Ltd. All rights reserved. 

Consider a two-person differential game for a conflict-control system described by ordinary differen- 
tial equations that are linear in the phase vector x and let the performance index be a semi-norm in 
the function space oJ~ the motions x[. ]. It has been shown [11] that the calculation of the value of the 
game can be reduced to successive construction of the upper convex hulls tpj(. ) of certain auxiliary 
functions Vj(x) defined in suitable domains Gj (j = k, k-1 . . . . .  1, where k is a fairly large natural number) 
in a suitable space of dual variables. The efficacy of the procedure depends essentially on the dimension 
and structure of the latter space; namely, on the dimension of the variables with respect to which the 
convexification is ca]Tied out. 

Generally speaking, the appropriate space is built up from the space of vectors m dual to the phase 
vector x and a space of additional parameters dual to specific finite-dimensional information elements 
of the prehistory of the motion. The number and dimension of the additional parameters depend on 
the specific properties of the performance index. For example, in a game in which the performance 
index is the total deviation of the motion x[-] from a given trajectory (see [8, p. 86], and also [10]), no 
additional parameters are needed and the constructions take place in the space of the vectors m. In 
a game with a performance index such as the maximum deviation of x[-] from a given trajectory [8, 
p. 92], the constructiions involve an additional scalar parameter v. However, it is sufficient to construct 
the hulls q~j(m, v) for the functions vj(m, v) by convexification of the latter with respect to m only in 
domains Gj, v, for fixed values of v. Thus, here too the constructions are actually carried out in the space 
of the vectors m. 

Characteristically, the performance indices used are positional functionals [8, p. 43; 9]. Hence the 
role of the information image for the optimal strategies in these games is played by the actual state 
{t, x[t]} of the system. On the other hand, in a game in which the performance index is the sum of the 
maximum and the total deviations of the motion from a given trajectory [11, p. 891], which is not a 
positional functional, computation of the value of the game requires the construction of upper convex 
hulls 9.(m, v) for suitable functions vj(m, v) in domains Gj of pairs {m, v} Here convexifieation of the 
functions vj(m, v) with respect to m only is no longer sufficient (there ,s a counterexample). Note that 
in such a game the whole prehistory of the motion plays the part of the information image for the 
strategies that form the saddle point of the game. 

The discussion then concentrates in detail on the case when the performance index considered in 
[11] has what is known as positional structure (and, as a corollary, it is a positional functional). It is 
proved that in this fairly general case, as in the special cases mentioned previously [8, pp. 86, 92], 
computation of the value of the game reduces to constructing upper hulls of functions defined in domains 
of a space consisting only of dual vectors m (i.e. convexification with respect to the additional parameters 
is not necessary). 
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1. S T A T E M E N T  OF T H E  P R O B L E M .  C O N S I D E R  T H E  S Y S T E M  

d x l d t = A ( t ) x +  f ( t , u , v ) ,  t o < ~ t ~  0 (1.1) 

x e R  n, u ~ P c R  r, v ~ Q c R  s 

Here x is the phase vector, u is the control vector, v is the noise vector, to and O are given times (to < 0), 
P and Q are known compact  sets, andA( t )  and f(t, u, o) are a matrix-valued function and a vector- 
valued function, respectively, both piecewise continuous with respect to t. 

Throughout this paper a function F(t, z), t ~ [to, ~], z ~ Z is said to be piecewise continuous with respect to t if 
there are a finite number of points tq of discontinuity with respect to t, which do. not depend on z, and moreover 
in the intervals where F(t, z) is continuous in t it is jointly continuous in all arguments, while at the points of 
discontinuity tq it is continuous from the right and may be defined from the left in such a way that the resulting 
function is jointly continuous in [tq_l, tq] x Z. 

The saddle-point condition for a small game [1, 2; 3, p. 56] is satisfied, i.e. for any m ~ R ~ and t 
[/0, O] it is true that  

min max(m, f ( t ,  u, u )) = max min(m, f ( t ,  u, v )) 
ucP o~Q uEQ ueP 

(1.2) 

where (., .) denotes the scalar product of  vectors. 
We will call a position of  system (1.1) a pair [t,x]. Suppose given some position { t , , x ,} ,  to ~< t .  < O. 

Borel-measurable realizations u[t.[.]a~) = {u[t] E P, t .  ~ t < O} and v[t .[  . ]0)  = {o[t] ~ Q, t .  ~< t < 
O} are admissible. Beginning from a position [ t . ,x,] ,  such realizations generate, according to (1.1) (with 
u = u[t],  o = o[t]) ,  absolutely continuous motions x[t.[- ]O] = {x[ t ], t .  ~< t ~< O, x[t.]  = x .  }. We shall 
assume that, in the space of  the variables t, x, we are given a compact set K (see, for example, [7, 
p. 40]) of  possible positions of  system (1.1). The projection of  K on to the t axis is an interval [to, a~]. It 
is also assumed that all trajectories of  system (1.1) that begin at an arbitrary position { t . , x . }  ~ Krema in  
in K for all t ~ ( t . ,  ~]. Then the motions under  consideration will satisfy a Lipschitz condit ion with 
respect to t with the same constant ~K. 

The performance index y of  the motion x[t , [ .  ]~] is defined as a functional y(x[t,[.  ]O]) which has the 
following structure. 

Le t  the following be given: a natural number  N I> 1, times t ill ~ [to, ~], t |i] < t [i+1] (i = 1 . . . .  , N - l ) ,  
t [~ = ~, constant  (d [iI x n) matrices D Ill (1 ~< d[i] <~ n)  and n-dimensional v e c t o r s  g[i] (i = 1, , N). It 
1 a l0 "s ssumed that  the rows of  the matrices D are linearly independent.  We consider the spaces of  
(d [i] + . . .  + d[Nl)-dimensional vector-tuples (y[il . . . . .  yIN]} consisting of  dIq]-dimensional vectors 
y[q] (q = i, . . . .  N), assuming certain norms la[i]({y [i] . . . . .  yIN]}) (i = 1 . . . . .  N; when i = N the symbol 
{y[i] . . . . .  y[N]} simply stands for the vec tory  [N]) defined in these spaces. 

The functional ~, is then has the form 

Here  

T = T(x[t. [.]1~]) = bt [h(t" )] ({D [h(t° )] (x[t [h(t* )] ] - gth(t.)]) ..... D[NI (x[t[Nl] _ g[/V]) }) (1.3) 

h ( t , )  = m i n  {i : t [i] >~ t ,  } 
I=I,..,,N 

We shall assume in addition that functions a[i](y Ii], ~)y[i] ~ Rd[i], 13 ~ R, [3 t> O, exist such that  

(1.4) 

lzt,~({ytn ..... ytJVl}) = atn(ytn ,~,) ,  f£ = ~t~+u({yti+u ..... ytm}) 

i = 1  ..... N - I  
(1.5) 

We may assume without loss of generality that the f u n c t i o n s  o[il0~[i] , [3) are defined for 13 < 0 in such 
a a n a < [~l Iil [,1 [,l w y that they are even functio s of  13, th t is, for 13 0 we put cr "(y ", 13) = a "(y ", -13), i = 1 . . . . .  
N - 1. It then follows from (1.5) that  the functions atilo, lil, 13) are norms in the spaces of  (d [/] -I- 1)- 
dimensional vectors {y[i], 13}. 



The problem of computing the value of a differential game for a positional functional 179 

Now, whatever the history x[t,[. ]t*) = {x[x], t ,  ~< x < t*}, t* ~< 0 of a motion x[t,[.  ]O] of system 
(1.1), the functional y of (1.3) may be expressed as 

y(x[t,[.]~}]) = o(x[t,[.]t*),~*), 6' = y(xtt*[.]'~]) 

Here, if h( t , )  = h(t*):, we have o(x[t,[-]t*), 13") = 13", while if h(t , )  < h(t*) we put o(x[t,[.  ]t*), 13") = 
[h*] [h*] o[h,l(x[t,[. ]t*), 13"), h ,  = h(t ,) ,  h* = h(t*), where o[h.l(x[t,[" ]t*), 13") are defined from the recurrent 

relations 

oth~ ! (x[t,t.]t*),~*) = O th'-ll(Dth*-ll( x[tth "- l l ] -  gth*-11)'13*) 
[h -II 

• " ' h *  * $ ,~[~; l(x[t.[.]t,),~. ) = (~li]( D[,l(x[t[,l ] _ g[d), (~li+~](x[t*[']t ),1 ~ )) 

ii = h, ..... h* - 2  

It follows from the properties of the functions o[i](y [i], 13) enumerated above that, for any fixed history 
x[t,[.]t*), the functional o(x[t,[.]t*), 13") is a non-decreasing function of 13, (13" i> 0). Thus, when 
condition (1.5) is satisfied, the functional (1.3) is positional [8, p. 43; 9]. 

It is required to find a control (or noise) designed to minimize (maximize) the index y (1.3), 

(1.5). 
These two problems combine, as shown in [7, p. 75; 8, p. 51], into a two-person zero-sum differential 

game (u is the move of Player I and t~ is that of Player II) in the class of purely positional universal 
strategies u(t, x, ~) and o(t, x, e), where {t, x} a K and e > 0 is a precision parameter. It follows 
from condition (1.2) and from the fact that y is a positional functional that, whatever the initial position 
[t,, x ,}  e K, the game just defined has a value p(t,, x,).  Moreover, the game has a saddle point, 
made up of an optimal minimax strategy u°(t, x, c) and an optimal maximin strategy v*(t, x, e). By the 
definitions of the value of a game and of optimal strategies, it follows that for any number ~ > 0 a number 
c(~) > 0 and a function a(~, e) > 0, 0 < ~ ~< e(¢) exist such that, whatever the initial position [ t , ,x ,}  
K, t ,  < O, the number ~ > 0, ~ ~< e(~) and the partition AM{t  j }  = {tj : tl = t , ,  tj < tj+hj = 1, . . . ,  M, 
tM+l = O} of the mesh 5M = maxj=l M(tj+l -- tj) <~ 5(~, ~) on the one hand, the stepwise control law 
U ~ = {u ( .) ,  e, AM{t,}} producing tla'e'control impulse 

uO[t]=uO(tj,x[tj],e), t j<~t<tj+l,  j = l  ..... M (1.6) 

guarantees the inequality 

T ~< p(t,, x,) + 

whatever the admisskble realization t~[t,[. ]0) of the noise happens to be; on the other hand, the stepwise 
law V ° = {u°( • ), 6, Am{tfi} producing the noise impulse 

v°[t] =v°(tj ,x[tj],e),  tj <~ t<tj+ I, j = 1 ..... M (1.7) 

guarantees the inequality 

y ~ p(t,, x.) - 

whatever the admissible realization u[ t , [ - ]0)  of the control happens to be. 
Optimal strategies u°(t, x, ~) and u°(t, x, c) are constructed as extremals (see [7, pp. 210, 220] or [8, 

pp. 62--64] to the value function p(t, x). Thus, to produce an optimal control and a counter-optimal 
noise, it is sufficient to be able to compute effectively the value of the game with any position It, x] acting 
as initial position. This is the aim of the present paper. 

Remark 1. If condition (1.2) does not hold in the differential game under consideration, the solution process is 
transferred to the class of mixed strategies [8, p. 247; 9]. However, the auxiliary constructions proposed in this 
paper also remain one of the main elements in those more complicated constructions. 
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Remark 2.,The performance index (1.3) may be given from the start, or introduced as an approximation for the 
initial index y, (x[t, [. ]~]), which takes a continuum of values ofx[t] into account. For example, let the performance 
index be 

( 0  "~llp 
~[(P' = ,(,P) ( X[t,[.]O]) = l~[Z(t ,D(t) (x[ t]-  g(t)))]P dt I (1.8) 

wherep is a given number (1 < p < oo),g(t) is a known piecewise continuous n-dimensional vector-valued function, 
D(t) is a given piecewise constant (d(t) x n) matrix-valued function (1 ~< d(t) <~ n) and Z(t, D(t)x) is a semi-norm, 
which is a piecewise continuous function of t(X(t, .) is a norm in the space of d(t)-dimensional vectors for each 
fixed t). 

The functional (1.8) is positional. Let p~)( t , ,x , )  be the value and u~),(t ,x,  ~) and u~p),(t,x, e) optimal strategies 
ina  differential Rame for system (1.1), (1.2) with the performance index ~,q'). 

A functional y~) approximating ,/,O,) may be constructed as follows. Consider some given partition 

A u { t [ i i }  = {till  : t[0] = to , tV-l]  < / [ i l ,  i = 1 . . . . .  N ,  t [~q = o} (1.9) 

of the interval [to, O] which includes all the times defining the intervals over which the matrix-valued function D(t) 
is constant, as well as all points at which the functions g(t) and X(t, D(t)x) in (1.8) are discontinuous with respect 
to t. Put 

We further assume 

D[,7 = D(t[il)(t[il_ t[i-l])llp, dfi] = d(t[il), g[il= g(t[i]) 

Z[0(y[i]) = ~(t[i], y[i]), y[ii ~ Rd p] ' i = 1 ..... N 
(1.10) 

where h(t ,)  is defined by (1.4). 
Then for any ~ > 0 a 8(Q > 0 exists such that, for any partition AN{t [/]} (1.9) of mesh ~N = max/=l . . . . .  N( t[0 - tIi-q) 

~< ~(~) 

]V(d)(x[t,[.lO])- V(P)(x[t,[.]O]; A~ {tvJ})[ ~ ~ (1.12) 

whatever the vector-valued function x[t,[ .]O] = {x[t], {t, x[t]} ~ K, t ,  ~< t ~< O}, t ,  E [to, 0], provided it satisfies a 
Lipschitz condition with respect to t with constant ~,r- 

The functional y~') has the structure (1.3), (1.5). In this case the times t Ill ( i  ----- 1 . . . . .  N) are defined by the 
choice of the partition A~,{t [i]} of  (1.9), of the matrix D Ill and the vector gli] of (1.10); while the norms p[i](- ) and 
functions alzl( : ) are defined by 

~tl,l({yt,J ..... yltq}) = [z[ql(ylq])] p , i= 1 ..... N 

ff[il f ~[il R~ -- [f'~[i]( ~[t']MP -g IRIP ~ l ip  ,J , , ' , - ~ ,  v "J - r l  J , i = I  ..... N - l  

Let p(P)(t,, x,;  AN{till}) be the value and u°(p)(t, x, e; AN{till}) and o~p)(t, x, e; AN{till}) the optimal strategies in a 
game for system (1.1), (1,2) with performance index y(P) of (1.11) (for some sufficiently fine fixed partition AN{t [i]} 
(159)). Considering the motions of system (1.1), which are realized in the case when Player I is guided by strategy 
u°(p),(.), and Player II by strategy o~)(.; AN{t[i]}), and conversely in the case when the players adopt strategies 
u~)(. ; AN{t[/]}) and u~)(. ), respectively, we conclude, by (1.12), that for any ~l > 0 a 8(q) > 0 exists such that, for 
any partition AN {t [i]} as in (1.9) of mesh 8N = maxi=l . . . . .  N(t Ill -- t [i-1]) ~< 80]) 

~(,D(t, ,x,)-  p(P)(t,,x,; AA,{t03}~ ~ 11 

whatever the position {t,, x,} ~ K. 
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Thus, the problem of constructing a minimax (maximin) control for system (1.1), (1.2) with performance index 
7~ ) (1.8) reduces to constructing the value function p(P)(t, x; AN{till}) of a differential game for a functional ~,0,) 
(1.11) of structure (1.3), (1.5). 

2. A P R O C E D U R E  F O R  C O M P U T I N G  T H E  V A L U E  OF T H E  G A M E  

Thus, let us consider a differential ~ame for system (1.1), (1.2) with performance index (1.3), (1.5). 
Suppose that a position p0')(t, x; AN{t~}) is realized. Let t .  < O. We assign a partition 

Ak-- ~k{Xj} ---- {Xj: Xl =t . .  Xi< X?. !, j =  1 ..... k, ~+l ='~} (2.1) 

of  the time interval [~:., O] in which we include all points t at which the functionsA(t) andf(t, u, u) are 
discontinuous, as well as all times t Iil (i = h(t.) . . . . .  N) of (1.3), (1.5). Let X(t, x) be a fundamental 
solution matrix for the equation dx/dt = A(t)x. We put 

'~j÷l 
AV j(t*,ra)= I max um~tn(m,X(O,'c)f('c,u,u ))d'c (2.2) 

~j uqfl 

m e / P ,  y ' - I  ..... k 

Moving in retrograde fashion via the division points of the partition Ak{X} (2.1), we will construct a 
sequence of domains Gj(t., xj _ 0) in the space/~ of vectors m and a sequence of functibns %(t., xj _-. 0, 
m), m e Gj(t,, xj +. O) O" = k + l ,  k . . . . .  1). 

Specifically, fo r j  := k + 1 we assume 

G,+l (t.,Xk+! + 0) = {m : m = 0}, q~k+l (to, Xk+ I + 0, m) =-- 0 

Gt+,(t.,x,+ , - 0 ) = { m : m f f i  DttClrl, l ~ R  t'wl, p.tN]*(/)~< l} 

q~k+l (t,, Xk+ i - 0, m) = -(m, gWl), m e Gt+l (t., xk+ t - 0) 

(2.3) 

The superscript T denotes transposition and ~t[N]'(-) is the norm dual to the norm ~t[N]'(.) of (1.3). 
Throughout, the following conventions will be used when describing domains: the notation for an element 
appears first in the braces, then a colon, and then the conditions for an element to belong to the domain 
(thus, the domain Gk+l(t,, xk+l + 0) consists of the single element m = 0; while m e G(t, ,  xi+l - O) if 
and only if m is such that ap[~-dimensional vector I exists, Ix[NI'(/) <~ 1, for which m = D[NIr/). 

We continue by induction. Suppose that for 1 < j + 1 ~< k + 1 the domains Gj+l(t., xi+1 +-. O) 
and the functions ~/+l(t,, xj+l +- O, m) have already been constructed. We then define for the next j  
value 

G1 (t,, xj + o) = (t,, xj+  - o) 

Wj (t., m) = AWj (t., m) + ff~j+1 (t.,'tj+ l - O, m), 
ik 

(t., + o, m) = {Vj ft., .)} +o) 

m E Gj (t,, xj + O) (2.4) 

The symbol (~/(.)} ~r denotes the upper convex hull of the function ¥(m), constructed by convexifieation 
with respect to m in G-- tha t  is, by definition, the minimum concave function of m that majorizes the 
function ~(m), m e~ G. 

Now, if xj is not one of the times t lil of (1.3) (by (1.4), this means that "cj < t lh], where h = h(xj)), we 
define 

Gj(t. ,xj - 0 )  =Gj(t . ,xj  +0), ¢pj(t.,xj -O,m)Eq~j(t.,'cj +O,m) (2.5) 

But if xj = t Ihl, h = h(xj), we define 
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Gj (t., xj - O) = {m : m = vm. + Xr ( t  [h], O)D[b]rl, 

v ~> 0, l • R t't`l, oth]*(l,v) ~< 1, m, • Gj(t , ,x j  + 0)} (2.6) 

where a[h]*(.) is the norm dual to the norm a[n]*(.) of (1.5) (for i = h); 

{pj(t,,xj-O,m)= m a x  [ v q ) ~ ( t , , ¢ / + O , m , ) - ( I ,  D IHgtH) ]  
{ v , m ,  ,l)lm " 

(2.7) 

m • Gj ( t . , ' r j  - O) 

where the maximum is taken over all possible triples {v, m, ,  l} associated by (2,6) with the given vector 
m • Gj(t . ,  zj - 0). 

To complete the induction process, we deal with the casej  = 1, constructing domains Gt(t . ,  xl +- O) 
and functions (pl(t,, zl + O, m),  m • Gl( t . ,  zl +- 0). 

It can be verified that for anyj  (j = k + 1, k , . . . ,  1) the domains Gj(t, ,  xj - 0) thus constructed are 
convex compact subsets of  R" containing the vector m = 0, while the functions ~0-(t., xj + 0, m) are 

• , . , . ° . ~ 

concave, bounded and upper semi-continuous m their domains of definmon, where 

q~j(t . ,  "~j q" O, O) ~ 0 (2.8) 

We introduce the quantities 

e(t, -I- 0 , x , ; A , )  = m a x  ot~(t , ,x, ,m) ( 2 . 9 )  
m~G I (t, ,'fl ~.0) 

~q~ (t,, w, m) = (m, X('0, t,)w) + (pq (t,, xq + 0, m), q = 1, 2 

If t ,  = O, we let A k in (2,9) denote a "degenerate" partition consisting of the single point 171 = t ,  = 0 = 
xk+l, and we then have domains G1(t,, zl + O) = Gk+l(t,, Zk+l + 0) (and functions qh(t,, zl -+ 0, m) --- 
(Pk+l(t,, Xk+l 4" O, m)  (see (2.3)). Then 

e( 0 - 0, x,; A, ) = It tN] (~N] (x. - gt~J)) ffi y(x[O[~]O]) 

Theorem. For any number ~ > 0 a number 6(~) > 0 exists such that, for any initial position {t,, x ,  } 
• K and partition A k of the time interval [t,, O] with mesh ~k = maxj=l ..... k(xy+l - Zj) ~< 8(~), the following 
inequality holds 

I p( t , ,x , ) -  e(t, - O, x,;Ak) I~ 

where p(t,, x . )  is the value of the differential game for system (1.1), (1.2) with the performance index 
y of (1.3), (1.5), and e ( t , -  0,x.;  Ak) is as defined in (2.9). 

Thus, the procedure described above for computing the quantity e(t.-O, x,;  Ak) on the basis of the 
functions ~j(t., zj +- O, m),  m e Gj(t. ,  zj +- O) (j = 1 , . . . ,  k + 1) leads to the value of the differential 
game. Just as in the special cases considered in [8, pp. 117, 129] and [10], the control impulses 
u°(tj, x[§.], e) in (1.6) and v°(tj, x[tj], ~) in (1.7) may be constructed effectively as extremals to the 
quantity e(tj.-O, • ) of (2.9). We emphasize that during the constructions, irrespective of the number 
N of instants of  time t Ill in (1.3), the auxiliary functions Vj(t., m) are defined and convexified in 
domains Gj(t. ,  zj + O) whose dimensions do not exceed that of the phase vector of the original 
system. 

3. V A L I D A T I O N  OF THE R E S U L T  

The following two lemmas establish the necessary properties of the quantities e(t ,  +_ 0, x , ;  At,). 

L e m m a  1. For any position { t , , x , }  e K, t ,  < 0 and partition Ak (2.1) of  the time interval [t,, 0]: 
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: re ( t ,  + 0 , x , ; A t )  , to < t thl e(t, 0, x,;A k) 
LOthl(Dthl(x, _ gthl), e(t, + 0 , x , ; A t ) ) ,  t, ffi t th3 

where  h = h ( t , )  as in (1.4). 

Proof. In the ease t ,  < t [hl the assertion of the lemma follows from (2.5) (in the easej  = 1) and (2.9), provided 
one takes into account that x~ = t,. 

Let t ,  = t Ihl. Then the domains Gl(t,,  Xl - 0) are related by (2.6) and the functions ¢Pl(t,, xl -+ 0, m) by the 
equality 

(2"7) v o Gl(t, ,  xl + 0) exists such that By (2.9), a ector m ,  ¢ 

e(t, + O,x, ;A k) ffi a~ (t, ,x,,m~) (3.1) 

We recall that olh](y Ih], 15) is an even function of 15, and hence a [hl* (l, v) is an even function of v. In addition, by 
(2.8), e(t, + 0,x, ;  Ak) >~ 0. Hence it follows that apIh]-dimensional vector/o and a number v ° >t 0, alhl*(/°, v °) ~< 1 
exist such that 

othl(Dlh](x, _gthl), e(t, +0 ,x , ;At ) )=  

= max [(l, Dtnl (x ,_gthl ) )+ve( t ,+0,x , ;At) ] f ( lO,Dth](x ,_gthl ) )+v0e( t ,+0,x , ;At  ) (3.2) 
o [hp (i,vyGI 

We define a vector 

m 0 ffi v°m ° + xr(t.,O)Dth]rl o (3.3) 

It follows from (2.6') and (3.3) that m ° ¢ Gl(t.,  xl - 0), and it then follows from (2.7) that ¢Pl(t., xl - 0, m °) >~ 
v0q)l(t*, ~1 "{- 0, m,  0) -'</0, D['h~[h']>. 

Thus, by (2.9) and (3.1)-(3.3), we obtain 

e(t,. - 0 ,x , ;At)  ~ {x~ ( t , ,x , ,m O) ~ (/°,D[hl(x, -g[h])) + vOcz~ ( t . ,x , ,m°)  = 

= Cr[h](D[h](x, _ g[h]), e(t, +O,x,;At)) (3.4) 

On the other hand, in the case under consideration, by the constructions (2.6) and (2.7) (withj = 1), for each 
vector m ~ Gl(t. ,  xl - 0) at least one triple {v, m.,  l} (m) = {v(m), m.(m) ,  l(m)} exists such that 

v ( m ) ~ 0 ,  m,(m)eGl( t . ,x l+O),  O[h]*(l(m),v(m)),~l 

v(m)m, (m) + X r (t,,O)D[h]Tl(m) ffi m (3.5) 

q~l(t*,xl - 0,m) ffi v(m)~Pl (t,,l: 1 + O,m.(m))- (l(m),D[hig[h])) 

In turn, by (2.9) a vector mo ¢ Gl(t, ,  Xl - 0) exists such that 

e ( t ,  - O, x , ;  A t ) = ct~ ( t , ,  Xo, m o )  (3.6) 

Let {v0, m,0,/0} = (v, m, ,  l}(m0) be the triple of (3.5) corresponding to this vector m0. Then 

e(t. +O,x.;At) ~ o~(t. ,x. ,m,o) (3.7) 

It now follows from, (3.6), taking note of (2.9) and (3.5) (for m = too), that 

e(t, - 0 ,x , ;At)  = Voa~(t,,x,,m,o)+(Io,Dthl(x, - gt~l)) 

(lo,Dthl(x, -Sthl))+Vo~t,  + 0 , x , ; a t )  ~ othJ(Dth](x, _gt~l), e(t, +0,x, ;At))  (3.8) 

Relationships (3.4) and (3.8) prove the statement of Lemma 1 for the case t ,  = t In], where h -- h(t,).  

L e m m a  2 (u- and o-stability).  Suppose  tha t  the real ized posi t ion is { t , , x , }  • K, t ,  < O and that  a 
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partition Ak (2.1) of the time interval [t,, 0] has been chosen. Then, for any relation of the noise 

u, It,[.It*) = {v, It] =u,  e Q, t, ~< t < t*} (3.9) 

in the case of u-stability (of the control 

u,[t,[.]t*) = {u,[ t ]  = u ,  ~ / ' .  t ,  ~< t < t ' }  (3.10) 

in the case of v-stability), where t* = x2 is the second point of Ak, an admissible realization of the control 
u[ t , [ . ] t* )  = {u[t] ~ P, t ,  ~< t < t*} (of the noise t)[t,[-]t*) = {t)[t] ~ Q, t ,  ~< t < t*}) exists such that, 
from an initial position [t , ,x,],  the realizations u[t,[.  ]t*) and u , [ t , [ .  ]t*) (u[t,[. ]t*) and t)[t,[-]t*)) steer 
system (1.1) to a position {t*,x* = x[t*]} ~ Ksuch  that 

e(t,  + 0,x,;A~) ~> e(t* - 0,x*;A~, ) (3.11) 

in the case of u-stability (or 

e(t,  + 0,x,;Ak) ~< e(t* - O , x ' ; A *  k. ) (3.12) 

in the case of o-stability). 
Here A~[, = A~,,{x~} is the partition of the time interval [t,, 0] generated by the points of Ak such 

that z~ = Xj+l, xj+l ~ Ak, j = 1 , . . . ,  k* + 1, k* = k - 1. 

Proof o f  u-stability. Let W = W(t*; t , , x , ,  u,) be the reachable domain (over all admissible realizations u[t,[. ]t*)) 
of system (1.1) at time t* from the position It,, x,], given the realization u[t,[. ]t*) of (3.9). We have to show that 
a vector x* ~ W exists satisfying inequality (3.11 ). 

Using the Cauchy formula for solutions of Eq. (1.1) (with the substitution u[t] ---) u and v,  ~ t)), we 
obtain 

f l W = w : w = X(t*, t , )x ,  + S X(t*,x)f('t,u[~],u,)dx, [u[xl ~ P, t, ~< ~ < t*} (3.13) 
t ,  

It follows from known facts in the theory of the integration of multivalued mappings (see, e.g. [12, p. 349]) that 
the set W is non-empty, convex and compact in R n. 

We now note that, by virtue of our notation and the relationship between the partitions Ak{xj} and A~[{T~ }, the 
construction (2.4) implies the following identities 

G I (l*,z~ - O) = G2(t,,x 2 -0) -- G! (t,,'r I +0) 
(3.14) 

(Pl (t*, x~ - 0,m) E tO2 (t,, x 2 - 0,m) 

Consider the function al(t*, w, m), w ~ W, m ~ Gl(t , ,  xl + 0) defined on the basis of the partition A~ by the 
second equality of (2.9). It is bounded, concave and upper semi-continuous with respect to m for every fixed w, 
and convex and continuous with respect to w for every fixed m. Consequently (see, for example, [13, p. 31]), a 
saddle point {w ° ~ W, m ° ~ G1(t,, xl + 0)} exists such that 

a'~(t*,wO.mO)= max a'{(t*,wO,m) (3.15) 
mEG ! (t,,'¢l +0) 

(m°,X(O,t  *)w O) ffi min(m°,X(O,t  *)w) (3.16) 
w q W  

We will show that the required inequality (3.11) holds for the vectorx* = w ° ~ W. Let u°[t, [-]t*) be the realization 
of the control, which by (3.13) corresponds to the vector w °. Then, by (3.13), taking into consideration that here 
by the measurable selection theorem of [14, p. 26], the minimization operation operation may be taken inside the 
integral sign, we conclude from (3.16) that 

t t* 
I ( m°,  X(O,~)f(x, uO[~], v .  ))dg = I mi~( m°, X(O,g)f(x,u,u. ))dx 
l ,  t,  

(3.17) 
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Further, taking (3.14) and (3.15) into account, we conclude from (2.9) that 

* 0 * e(t -0,w ;A' k. ) = Ot~(t.,x.,mO)+~ (m°,X(O,'OfC't,u°['cl,v.))d¢ 
t ,  

(3.18) 

On the other hand, since m ° ~ Gl(t., xl + 0), we conclude from (2.9), using (2.4) (withj = 1) and the majorizing 
property of the hull tpl(t., xl + 0, m) for the function ¥1(t., m), that 

e(t. + 0,x,;A k) ~ tx~(t, ,x. ,m°)+ AWl (t.,m 0) (3.19) 

Now, taking (2.2) into consideration, we conclude that the difference between the left-hand sides of (3.18) and 
(3.19) does not exceed the difference between the left- and right-hand sides of (3.17). This proves inequality (3.11) 
for x* = w ° ~ W, thus establishing u-stability. 

Proof of  o-stability. It follows from (2.9), via Carath6odory's theorem [15, _P0" 155] for the upper convex hull 
tPl(t,, xl + 0, m) of the function Vl(t., m) (see (2.4) withj = 1) that a vector rn E Gl(t.,  xl + 0) exists such that 

e(  t ,  + O, x . ;  a k ) = ¢ti ~ ( t . ,  x . ,  mo ) = ot ~ ( t . ,  x . ,  m o ) + a V  I (t*, ,n o ) (3.20) 

We choose a sample of the noise o[t,[. ]t*) to satisfy the condition 

(m 0 , X(O, Of(t, u. ,v It])) = umEa~(m0, X(O, Of(t, u..,v )) (3.21) 

t, <~ t < t* 

By the measurable selection theorem [14, p. 26], such an admissible sample u[t,[. ]t*) exists for any fixed 
u.  ~P. 

The samples u[t.[. ]t*) (3.10) and o[t.[.]t*) (3.21) steer system (1.1) from the position [t., x.] to a position 
{t*, x* = x[t*]} ~ K, for which, by (2.9), using identities (3.14) and the Cauchy formula, we obtain 

t ~ 

e(t* --0,x*;A;. ) ;~ oti (t*,x*,mo) = ot~(t.,x.,rao)+ ~ (mo,X(O,t)f(t,u,,v[tl))dt 
t ,  

(3.22) 

Inequality (3.12) now follows from (3.20) and (3.22), after taking into account (1.2), (2.2) and (3.21). This 
completes the proof of Lemma 2. 

Now, in order to verify the truth of the theorem, it will suffice, choosing a number e > 0 and a partition 

• = = = - -  

law V ° = {o°( • ), e, Ak{Xj} } (see (1.7)) while Player I, relying on information about the actually realized 
position (xy, x[xy]} artd the designated noise sample u°[ t ] = v°(xy, x[ xj ], e), xj <~ t < xj+l, chooses a control 
u[xj[. ]xy+l at each step in accordance with Lemma 2 (u-stability); on the other hand, the evolution must 
also be considered along the motion realized when Player I has chosen the control law U* = (u°( • ), 
e, Ak{Xj}} (see 1.61t) and Player II designates the noise v[xj[.]Xj+l) in accordance with Lemma 2" 
(o-stability). Throughout, note should be taken of the equalities established in Lemma 1, the fact that 
o[i](y [i], 13) (i = 1 . . . . .  N - 1) are non-decreasing functions of fl, and relationships (1.5). 
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